
How Does Misconfiguration of Analytic Services Compromise
Mobile Privacy?

Xueling Zhang
University of Texas at San Antonio

San Antonio, TX, USA
xueling.zhang@utsa.edu

Xiaoyin Wang
University of Texas at San Antonio

San Antonio, TX, USA
xiaoyin.wang@utsa.edu

Rocky Slavin
University of Texas at San Antonio

San Antonio, TX, USA
rocky.slavin@utsa.edu

Travis Breaux
Carnegie Mellon University

Pittsburgh, PA, USA
breaux@cs.cmu.edu

Jianwei Niu
University of Texas at San Antonio

San Antonio, TX, USA
jianwei.niu@utsa.edu

ABSTRACT

Mobile application (app) developers commonly utilize analytic ser-
vices to analyze their app users’ behavior to support debugging,
improve service quality, and facilitate advertising. Anonymization
and aggregation can reduce the sensitivity of such behavioral data,
therefore analytic services often encourage the use of such pro-
tections. However, these protections are not directly enforced so
it is possible for developers to misconfigure the analytic services
and expose personal information, which may cause greater privacy
risks. Since people use apps in many aspects of their daily lives,
such misconfigurations may lead to the leaking of sensitive per-
sonal information such as a users’ real-time location, health data,
or dating preferences. To study this issue and identify potential
privacy risks due to such misconfigurations, we developed a semi-
automated approach, Privacy-Aware Analytics Misconfiguration
Detector (PAMDroid), which enables our empirical study on mis-
configurations of analytic services. This paper describes a study of
1,000 popular apps using top analytic services in which we found
misconfigurations in 120 apps. In 52 of the 120 apps, misconfigu-
rations lead to a violation of either the analytic service providers’
terms of service or the app’s own privacy policy.

KEYWORDS

Privacy, Mobile Application, Program Analysis, Analytic Services,
Configuration

ACM Reference Format:

Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei
Niu. 2020. How Does Misconfiguration of Analytic Services Compromise
Mobile Privacy?. In 42nd International Conference on Software Engineering
(ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3377811.3380401

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380401

1 INTRODUCTION

Mobile apps often rely on third-party services to enhance user
experience through features such as social network integration
and crash analysis. Among the most popular types of third-party
services, analytic services enable app developers to gather user
behavior information to improve their products and monetize their
apps with targeted ads. Such analytic services can be integrated
into apps through package libraries to collect user activities and
send user behavior to their servers for analysis. Server-side analysis
can then generate aggregated reports for the app’s developers. For
example, such aggregated reports may describe how many users
are from New York City, how many users reached a specific activity,
or how long they tend to spend on a specific activity.

Analytic services provide specific methods that allow app devel-
opers to set attributes for their users, we refer to those methods
as Attributes Setting Methods (ASMs). For example, one commonly
used category of ASMs is “set user identifier”, which allows app
developers to store a user ID for the individual using their apps.
These methods are usually optional and can be used to recognize
the same user across multiple usages of an app. Once a unique ID
is assigned through such a method, the user’s behavior reports will
be labeled with the provided user ID. These identifiers are strictly
used for identification with respect to the service and do not need
to be personally identifying. For example, a random, unique number
or hash value could be used instead of an email address. Using per-
sonally identifiable information (PII)1 as an ID would be considered
as bad practice in this case as it presents an unnecessary exposure
of sensitive data. By misusing PII (e.g., email, username, device ID)
with ASMs this effectively un-anonymizes the reports produced by
the analytics service resulting in privacy risk. Furthermore, such
misuse may violate the app’s own privacy policy, the analytic ser-
vice providers’ terms of service, or general best practices (e.g., data
overuse, least privilege).

Amajor privacy risk associatedwith third-party analytic services
is the data usage after the behavioral reports have been collected
by the analytic service. Once the data have left the app and reached
an analytic service, the developers and users lose control of the
information. Even if the third-party service is trusted not to misuse
the data, accumulated long-term storage of un-anonymized user

1We use the union of GDPR and Google Analytics definitions for PII[14, 31].

https://doi.org/10.1145/3377811.3380401
https://doi.org/10.1145/3377811.3380401

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu

behavioral data is susceptible to theft or leakage [1, 6, 17]. Not ex-
pecting PII to exist in the collected behavioral reports, third-party
services may share the data to their business partners or do not pro-
vide enough protection for them. Furthermore, when multiple apps
use the same PII for the same analytic service, multiple behavioral
reports can be combined to build more comprehensive personal
profiles.

Legal requirements such as EU General Data Protection Regula-
tion (GDPR) requires lawful basis (e.g. legal obligation, explicit con-
sent) to process users’ data [15], unless the data is anonymized[13].
For these reasons, it is imperative that unnecessary use of PII for
behavioral-report labeling to be eliminated.

Many of the most commonly used analytic services provide
documentation specifically discouraging or prohibiting the use of
PII as user attributes when using their ASMs. For example, Google’s
Firebase [3] includes the following in their documentation [10] for
configuration of ASM setUserProperty():

“When you set user properties, be sure to never include person-
ally identifiable information such as names, social security
numbers, or email addresses, even in hashed form.”

Flurry, another popular analytics service, has the following text in
its documentation [11] for ASM setUserID():

“Warning: It is a violation of our terms of service to track
personally identifiable information such as a device ID (e.g.
Android ID) using this method. If you have a user login that
you wish to send to Flurry using this method, you must
anonymize the data using a hashing function such as MD5
or SHA256 prior to calling this method.”

App developers may also attempt to reduce PII-related misconfig-
urations by adopting privacy policies that require anonymization or
aggregation of data when used with analytic services. For example,
the privacy policy for the app ShopClues[29] claims:

“ShopClues.com may also aggregate (gather up data across
all user accounts) personally identifiable information and
disclose such information in a non-personally identifiable
manner to advertisers and other third parties for other mar-
keting and promotional purposes.”

Despite such documents and policies, it is not clear whether
app developers always follow them in reality as they may ne-
glect them during development. In this paper, we perform a study
to understand how app developers invoke ASMs in practice and
whether those practices comply with the documents and policies
of the analytic service providers and the apps themselves. It should
be noted that, while there exist research efforts on data collec-
tion behavior, over-privilege, and leak detection for third-party
libraries [36, 41, 43–45], our work is different in that it studies the
cause of leaks related to misconfiguration of third-party services.
Specifically, we try to answer the following four research questions
in this study.

• RQ1:What configuration methods do analytic service pro-
vide and how do apps invoke those methods?

• RQ2: How commonly do app developers use PII when con-
figuring analytic service?

• RQ3: Do analytic services provide mechanisms to protect
anonymity in the case of misconfiguration as a result of
RQ2?

• RQ4: Do analytic service misconfigurations result in vio-
lations of apps’ own privacy policies and analytic service
providers’ documents/policies?

To answer these research questionswe developed a semi-automatic
approach, Privacy-Aware Analytics Misconfiguration Detector for
Android (PAMDroid), to detect and analyze misconfigurations that
may lead to privacy risk. In this approach, we first investigated
the documentation of the 18 most popular analytic services in the
mobile analytic ecosystem as listed in AppBrain[2]. We acquired
the methods provided by these analytic services through their Ap-
plication Program Interface (API) specifically for configuring user
attributes (ASMs). We also collected the configuration instructions
and terms of service notices from these analytic services, when
available, to gather their guidelines and recommendations for use.
With this data, we designed and conducted an experiment to dy-
namically and automatically evaluate the top 1,000 Google Play
store apps that contained at least one ASM invocation in their code.
We detected invocations to attribute-setting ASMs at run time and
recorded parameter values to study what the common practices
were and whether they abode by the app’s privacy policies, the
analytic service guidelines, and best practices concerning PII for
using analytic services. We also investigated the analytic reports
generated by the analytic services to study whether the services
applied any mechanisms to anonymize or aggregate the collected
data.

We have the following major findings:

• Based on the results of our semi-automated approach, 555
out of 1,000 top apps from the Google Play store had at least
one ASM invocation observed at run time and 120 of them
used PII to configure analytic service without encryption.

• All the analytic services we investigated provide behavior
reports on individual users to app developers and the reports
are labeled with exactly the same identifiers provided by app
developers. Therefore, if PII is used as an identifier, they will
be directly linked to the user behavior reports, resulting in
targeted, non-anonymous and non-aggregated information.

• Wemanually inspected the policies of the 120 apps and found
27 of them may violate their own privacy policies by using
PII as user attributes.

• Using PII with analytic services may also violate the Terms
of Service (TOS) of analytic services. Among the analytic
services we studied, we found that four of them explicitly
require app developers to avoid passing PII to ASMs. They
are Firebase, Google Analytics, Flurrry and Mixpanel, and
they have the app-market shares of 55.95% [23], 26.84% [25],
5.12% [24], %0.77 [26], respectively. Although only four an-
alytic services state this requirement explicitly, Firebase,
Google Analytics, and Flurry are the top three market share

How Does Misconfiguration of Analytic Services Compromise Mobile Privacy? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Analytic services collect user events by default

Firebase
ad_click, ad_exposure, ad_impression,
screen_view, user_engagement, session_start,
app_clear_data, app_exception, etc.[7]

Mixpanel first app open,app updated, app crashed, app session
in app purchase. [18]

holders and dominate the market, so we believe this require-
ment is a standard for analytic services. Our result shows
that 37 apps which are using the four analytic services did
set user’s PII to the ASMs, and thus may violate analytic ser-
vices’ terms of service (Firebase, Google Analytics, Flurrry)
or privacy guidelines (Mixpanel).

2 BACKGROUND ON ANALYTIC SERVICES

For a better understanding of users’ behavior, app developers often
choose to utilize analytic services. Analytic services usually provide
client libraries that app developers could utilize in their app, which
will record an app user’s interaction with the app and send the
corresponding data to the server of the analytic service. Later, the
analytic services can link the activity of a mobile app user over
time into a behavior report. The behavior report includes detailed
usage information about this user. The analytic services can then
aggregate all the users’ reports and provide analytic data to the app
developers so that they can improve their product or make better
business decisions based on the analytic report.

In this section, we describe the background information about
analytic services, especially about the user events they track, their
attribute setting methods and terms of service.

2.1 Tracked User events

Analytic services automatically collect some events that are trig-
gered by basic interactions such as ad impressions, ad clicks, and
screen transitions. Table 1 shows the default events collected by
Firebase and Mixpanel. From the table, we can see that the collected
events contain detailed information about the user’s usage of the
app and interactions with the ads.

2.2 Analytic Service Configuration

Analytic services provide Attributes Setting Methods (ASMs) that
enable developers to customize the analytic service by setting some
attributes for their users. Developers can set identifiers or other
attributes such as age, gender, and location on each app user. Later,
developers can use those attributes as a filter or metrics in their
analytics reports. For instance, a developer may want to know the
geography distribution, or age distribution of their users. The data
that developers pass to those ASMswill be associated with the users’
collected events and then sent to the server of analytic services. To
protect users’ privacy, analytic services have certain guidelines or
suggestions for how the developer should use those ASMs. We list
two from some analytic services here as examples:

In Firebase[10] [8]:
When you set user properties, be sure to never include
personally identifiable information such as names, social

security numbers, or email addresses, even in hashed
form.
Note: You are responsible for ensuring that your use of
the user ID is in accordance with the Google Analytics
for Firebase Terms of Service. ... For example, you cannot
use a user’s email address or social security number as a
user ID.

In Mixpanel[19]:
If you wish to track users truly anonymously, however,
then your tracking implementation should not use user-
specific information, such as the user’s email address.
Instead use a value that is not directly tied to a user’s
PI (personal information), whether it be a unique anony-
mous hash, or a non-PI internal user identifier.

These instructions require the app developers to not use any PII
to configure analytic services and encourage them to use anony-
mous data instead.

2.3 Personally Identifiable Information

We consider PII as the union of the definitions by Google Analyt-
ics and the EU General Data Protection Regulation (GDPR). The
following statement is from Google Analytics [31].

“Google interprets PII as information that could be used on
its own to directly identify, contact, or precisely locate an in-
dividual. This includes: email addresses, mailing addresses,
phone numbers, precise locations (such as GPS coordinates -
but see the note below), full names or usernames”

The following statement is from GDPR [14].

“Personal Data: ... an identifiable natural person is one who
can be identified, directly or indirectly, in particular by ref-
erence to an identifier such as a name, an identification
number, location data, an online identifier or to one or more
factors specific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural person.”

GDPR also defines online identifiers [16] which we include as
PII:

“Online Identifiers: Natural persons may be associated
with online identifiers provided by users’ devices, application,
tools or other identification tag and it could be used to as-
sociate with natural persons, because online identifiers may
leave traces which, in particular when combined with unique
identifiers and other information received by the servers, may
be used to create profiles of the natural persons and identify
them.”

3 PAMDROID AND STUDY DESIGN

The goal of this research is to detect misconfigurations in analytics
services as they may lead to privacy risks. To this end, we developed

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu

PAMDroid, a semi-automated approach to detect the misconfigu-
ration of analytic services due to setting PII to ASMs. As illustrated
in Figure 1, there are two manual preparation steps of PAMDroid.
First, we manually collect a set of most popular analytic services
and Android apps. For each analytic service, we investigate its API
documentation to collect all ASMs that app developers can use
to set user attributes. Second, we set up an Android device and
collected all its information to construct a reference user profile. The
profile includes different platform IDs (e.g., device ID, serial number,
Android ID, advertising ID), a synchronized Google account (e.g.,
user name, user email, address, age, gender, date of birth), and other
sensitive information (e.g., location, IP address, MAC address).

After these two steps, PAMDroid first performs static smali code
analysis on the apps to filter out the apps that do not invoke any
ASMs at all. Then, PAMDroid automatically instruments all ASMs
(detected with static smali code analysis) to print their argument
values to system log. After that, PAMDroid uses Monkey[30] to
test the instrumented apps’ user interface. Note that many apps
trigger analytic services only after a user is logged in. As a sup-
plement of Monkey, we perform manual login for all apps that
require login to get to the start page. Finally, PAMDroid compares
the collected system logs with the reference user profile. When
certain types of information in the reference user profile show up
in the system log, PAMDroid detects an ASM misconfiguration.
After all misconfigurations are detected, we manually inspect the
corresponding apps’ privacy policies and corresponding analytic
services’ terms of services to detect violations and misalignments.
It should be noted that the major goal of this research is to study
the commonality and characteristics of ASM misconfigurations,
and PAMDroid is developed for the study, so we supplemented it
with manual analysis to acquire most comprehensive and accurate
results. If we do not perform manual log-in and adopt existing au-
tomatic approaches for policy analyses [46, 49, 50, 52], PAMDroid
can be made fully automatic, but its effectiveness is not clear and it
is not the focus of this paper.

We next introduce the details of our study setup with the PAM-
Droid approach.

3.1 Collection of Apps and Analytic Services

We identified the 18 most popular analytic services using published
statistics provided by AppBrain [2], a company specializing in app
marketing and promotion. After that, we identified the ASMs pro-
vided by the selected analytic services. The top 1,000 free apps
containing at least one invocation of the studied ASMs were col-
lected from PlayDrone [20], a collection of metadata for Android
apps on the Google Play store. We identified those apps which
invoked ASMs by analyzing their smali code2. If an app obfuscated
the ASMs it invoked, we could not apply our approach to it. Fur-
thermore, we also ruled out apps that were incompatible with our
device and those no longer existing in Google Play due to being
removed since being included in the PlayDrone database.

To determine whether an app had an invocation of a studied
ASM, we first decoded the analytic libraries into smali format using
APKTool [47] and identified each ASM’s smali signature. We then
decompiled each app’s APK (Android Package) file into smali format

2Assembler for the dex format used by Dalvik

and scanned the resulting file for occurrences of ASM signatures.
Only apps containing at least one ASM signature were kept for
consideration.

3.2 Runtime Information Collection

There are multiple approaches to detect information flow to ASMs.
The first approach we considered was using static taint analysis.
To this end, we used FlowDroid [32] to analyze the 1,000 apps
and defined ASMs as sinks and personal information sources from
SuSi [39] as sources. The result showed that FlowDroid only iden-
tified 10 data flows from sources to sinks. Through further investi-
gation, we found that the sources of PII sent to ASMs are often not
Android API methods, but system files or databases. Furthermore,
PII often flow through paths that are not handled by FlowDroid,
such as android.content.SharedPreferences, which is a data
structure in Android system that stores user information such as
username, device ID, etc. If we add all these API methods as sources
of FlowDroid, it will report many false positives as files, databases,
and Android system data structures may also contain a lot of non-
PII.

To make sure our study is conservative (all reported miscon-
figurations are real), we ultimately utilized value-based dynamic
taint analysis. As mentioned earlier, we prepared a reference user
profile to match arguments sent to ASMs. To make sure values in
our user profile are not confused with other values, we designed
very strange information (e.g. user name, email address) for the
synchronized Google account. To make sure our matching is robust,
for the values in the reference user profile, we further generate
values with different value transformations, such as reverting and
truncating. We also produced hashes for all PII using common
hashing algorithms provided by Android API methods so that we
could identify hashed values (although in the study we did not find
hashes being sent). Note that we manually confirmed all matched
results to make sure that our value-transformations do not lead to
wrong matches. One limitation of value-based taint analysis is that
we cannot detect encrypted PII with an app-specific key. Notably,
using encrypted PII as user attributes on analytic service already
reduces the risk to privacy, because the unencrypted PII will not
be combined with collected user behavior.

In order to catch the arguments of ASM invocations during
runtime, we instrumented all ASMs in smali code by adding a call
to the Android logger to report the invocation at the beginning
of the ASM implementation. This allows us to use the Android
system log to analyze method argument values being set at runtime.
After inserting the code, we rebuilt the smali code back into APK
format for testing. We used the Android Debug Bridge (adb) to
automatically install the rebuilt apps onto our test device and run
the apps and then executed Monkey to perform the testing. For each
app, we automatically installed, executed, tested, uninstalled and
saved the system log into the local file system for later inspection.
During testing, we found 254 apps requiring login to an account
to show the app’s start page, so we manually created accounts for
these apps using the reference user profile to complete the login
process.

Finally, PAMDroid searched the system logs generated during
testing and extracts argument values of ASMs based on flags in-
serted during instrumentation. Table 2 is an example where Line

How Does Misconfiguration of Analytic Services Compromise Mobile Privacy? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 1: Privacy-Aware Analytics Misconfiguration Detector(PAMDroid)

1 shows our inserted flag; Line 2 shows the ASM that be invoked
(Firebase.setUserProperty), and Line 17 shows our flag and the
first argument value that was passed to the ASM (“vivino_email”).
Line 18 shows the second argument value which was the email
address (represented as "************@gmail.com").

4 STUDY RESULTS

In this section, we present the results of our study and answer the
research questions.

4.1 Apps’ Usage of Analytic Services

To answer RQ1, for each analytic service, we first investigated
their documentation and collected the ASMs. We noticed that every
analytic service provides the methods that allow developers to set
attributes for their users, such as setUserID, setCustomerUserId,
or setUserIdentifier, etc. Firebase provides an method called
setUserProperty, which allows developer to set any attributes to
describe their user. It takes two arguments which are similar as a
pair of “key” and “value”. Other methods include setUserEmail,
setLocation, setAge, setGender, setDeviceId, setPhoneNumber,
etc. The full list of ASMs are available at our anonymous project
website 3. Four analytic services (Firebase, Google Analytics, Flurry,
Mixpanel) explicitly require app developers to avoid setting PII [8,
9, 11, 19] to ASMs.

A method to set user identifier (e.g., setUserId) is provided
by every analytic service and mostly commonly invoked in our
test. For example, Crashlytics.setUserIdentifierwas invoked
in 147 apps, and Flurry.setUserId was invoked in 67 apps. We
present these frequencies in Table 3. In the table, the first column
presents the analytic service name; the second column presents
the total number of apps that invoked the ASMs from this analytic
service. The third column represents the ASM name; and the fourth
column presents the number of apps that invoked the corresponding
ASM. Among the 1000 apps that contain ASM invocations in their
smali code, 555 apps invoked 29 ASMs from 13 different analytic
services during our runtime testing. Table 3 shows that Firebase

3https://sites.google.com/site/trackersec2019/

Figure 2: #Apps Invoking Different Types of ASMs

and Crashlytics are the most commonly invoked analytic services.
Note that a single app could use more than one analytic services,
within one analytic service, the app could invoke multiple ASMs to
set user attributes.

To understand how apps use different types of ASMs over all
analytic services, we categorized all ASMs in Table 3 into a number
of categories according to their purposes. In particular, the cate-
gories are “set user identifier”, “set user properties”, “set device
identifier”, “set user email”, “set username”, “set age”, and “set lo-
cation”. In Figure 2, we present the number of apps that invoke
different categories of ASMs. We observed that 387 apps set user
identifiers to at least one analytic service, showing that many app
developers set identifiers for users to differentiate individual user
interactions through the analytic service, and the function is also
well supported by analytic services in general. Furthermore, 198
apps set user properties to at least one analytic service. Since ASMs
in the “set user properties” category are very general and can be
used to set almost any data, it is difficult to statically tell what
information is sent through them.

Finding 1. Our answer to RQ1 is that, all our studied analytic
services provide ASMs for app developers to set user attributes,
and more than half (555 of 1,000) of apps trigger ASMs to label
user behavior reports.

4.2 PII set to ASMs in Misconfiguration

To answer RQ2, we further studied what types of data are set
to ASMs in our studied apps. By matching the logged method

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu

Table 2: System log of ASM invocation

1 01-10 18:16:55.024 1931 1931 W System.err: java.lang.Exception: Third-party API invoke detection:Print StackTrace with parameter:
2 01-10 18:16:55.024 1931 1931 W System.err: at com.google.firebase.analytics.FirebaseAnalytics.setUserProperty(Unknown Source)
3 01-10 18:16:55.024 1931 1931 W System.err: at com.vivino.android.a.a.a(FirebaseHelper.java:160)
...
...
17 01-10 18:16:55.024 1931 1931 I Third-party API invoke detection:Print StackTrace with parameter:: vivino_email
18 01-10 18:16:55.024 1931 1931 I Third-party API invoke detection:Print StackTrace with parameter:: ************@gmail.com

Table 3: #Apps Invoke Different ASMs

Analytic library # Apps Method # Apps

Firebase 216 setUserId 64
setUserProperty 193

Crashlytics 163
setUserEmail 21
setUserIdentifier 147
setUserName 38

AppsFlyer 81
setAndroidIdData 31
setAppUserId 4
setCustomerUserId 63

Flurry 70
setAge 6
setLocation 2
setUserId 67

Tune 38

setAndroidId 12
setDeviceId 3
setUserEmail 2
setUserName 2
setUserId 27
setFacebookUserId 6
setGoogleUserId 6
setTwitterUserId 6

IronSource 24 setUserID 24
mixpanel 17 identify 17
Applovin 13 setUserIdentifier 13

Leanplum 12
setDeviceId 6
setUserId 4
setUserAttributes 5

Branch 11 setIdentity 11
Google Analytics 7 setClientID 7
Appsee 6 setUserId 6
Newrelic 4 setUserId 4

arguments to the controlled user profiles (see Section 3.2), we can
detect misconfigurations on the fly.

Table 4 presents the number of apps setting different types of PII
to ASMs. In particular, Columns 1-4 present the type of PII, ASM
name, the number of Apps setting certain type of PII to a certain
ASM, and the total number of Apps setting certain type of PII to
all ASMs. We make three major observations. First, overall 120
apps set PII or PII’s transformation (11 apps) to ASMs. It should be
noted that a single app may set multiple data types, so the values
in Column 4 do not add up to 120. Second, among the 120 apps, 79
apps set Android ID to ASMs, 24 apps set users’ email addresses to
ASMs, and 19 apps set users’ registered username to ASMs. Note
that registered usernames are used to uniquely identify users in
the app, and many users use the same username across apps, so
Google Analytics explicitly lists username as PII [22]. Third, one
type of PII is observed to be set to ASMs for multiple purposes. For

example, Android IDs are mainly set to ASMs in the category “set
user identifier”, but it is also set to Crashlytics.setUserName()
and Firebase.serUserProperty(). Email addresses are also set
to ASMs in the categories of “set user properties” and “set user
identifier”. So the vagueness and generality of ASM design may
have aggravated their misuse.

In Figure 3, we further show the number of apps that set different
PII to different analytic services. In the figure, we organize the num-
ber of apps setting various PII to each analytic service as a separate
column chart. In each sub-column-chart, the x-axis shows different
analytic services, and the y-axis shows the number of apps setting
different personal information type in that analytic service. From
the figure, we can see that Crashlytics and AppFlyer are receiving
PII from the most number of apps, and Crashlytics also received
user email addresses from the most number of apps. Furthermore,
Firebase and Flurry, which explicitly require app developers to
not send PII to them, both receive various types of PII, including
Android ID, device series number, and username. Firebase further
receives email address, and Flurry further receives IMEI.

Finally, Figure 4 presents the category distribution of our dataset
and the percentage of apps (in each category) setting PII to ASMs.
Each bar represents the total number of apps in the specific cate-
gory, while the dark portions represent the number of apps in the
category that set PII to the ASMs. We further label the percentage
of dark bar portion for each bar. The figure shows that there is not a
specific category of apps that are much more likely to use PII as user
attributes. Compared with others, apps in Photography, Communi-
cation and Shopping have higher possibility of setting PII to ASMs.
Besides PII, our test result shows that 24 apps used Advertising
IDs, which can be changed by users and sometimes encouraged by
analytic services to be used as user identifiers. However, if users
do not change Advertising IDs frequently, they can still be actually
PII. Since we want our study results to be conservative, we do not
include them as PII in our study results.

Finding 2. Our answer to RQ2 is that, among the 1,000 apps we
studied, at least 120 apps (detected by PAMDroid) misconfigure
ASMs with PII. In particular, Android ID (in 79 apps), User Email
(in 24 apps), Username (in 19 apps), IMEI (in 6 apps), and Serial
Number (in 3 apps) are the types of PII being set to ASMs.

4.3 Enforcement of Aggregated and

Anonymous Reports

To answer RQ3, we studied all 13 analytic services being invoked
to find out whether they have enforcement mechanisms to reject
PII being set to ASMs. Unfortunately, none of 13 services have such
built-in enforcement mechanisms. Only one of them, Appsflyer [4],

How Does Misconfiguration of Analytic Services Compromise Mobile Privacy? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 3: # Apps set different PII to different analytic services

Table 4: #Apps Setting Different PII to ASMs

Personal Info Tracker API #Apps Total

Android ID

Firebase.setUserId 8

79

Firebase.serUserProperty 5
AppsFlyer.setAndroidIdData 29
AppsFlyer.setCustomerUserId 2
Flurry.setUserId 11
Mixpanel.identify 4
Tune.setAndroidId 11
Tune.setDeviceId 1
Crashlytics.setUserIdentifier 16
Crashlytics.setUserEmail 1
Crashlytics.setUserName 1
Applovin.setUserIdentifier 2
GoogleAnalytic.setClientId 1
Appsee.setUserId 1

Email

Firebase.serUserProperty 3

24

Mixpanel.identify 2
Tune.setUserEmail 2
Tune.setUserName 1
Crashlytics.setUserEmail 12
Crashlytics.setUserIdentifier 1
Crashlytics.setUserName 5

Username

Firebase.serUserProperty 1

19

Flurry.setUserId 2
Tune.setUserName 1
Crashlytics.setUserName 14
Crashlytics.setUserIdentifier 1
Leanplum.setUserAttributes 1
Leanplum.setUserId 1

IMEI
Flurry.setUserId 3

6Tune.setDeviceId 2
Crashlytics.setUserIdentifier 1

Serial Number Flurry.setUserId 2 3Firebase.serUserProperty 1

provides a method to set user email address with encryption, but
none of apps in our data set actually invoked this method. Further-
more, we studied whether the information set to ASMs is encrypted
before they are combined with behavior reports, and no analytic
service is performing the encryption. It should be noted that all the

Figure 4: # Apps distribution in categories

Figure 5: A demo report in Dashboard of Flurry [12]

analytic services which we studied use encrypted network connec-
tion (e.g., HTTPS) to send collected information. However, if the PII
set to the ASMs is combined with behavior reports in un-encrypted
form, the anonymity of the collected user behavior is already lost
as the whole data will be decrypted later.

It is very challenging to tell how data is stored and processed on
servers of analytic services. However, we can predict their practice
from the behavior reports they provided to developers. Therefore,
we further studied whether the analytic services provide reports on
individual user behaviors. We found that for all analytic services
that we investigated, their online analysis reports for developers are

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu

not limited to aggregated data, but are instead itemized by received
user attributes. Figure 5 , Figure 6 and Figure 7 presents example
report screen-shots from Flurry, Mixpanel, and Crashlytics. From
the three figures, we see that reports are organized by user attributes
and presented to app developers, and the identifiers (e.g., user email,
username or device IDs) are presented without anonymization.
Figure 5 shows that Flurry’s report not just contains the userId, but
also user’s latitude and longitude data.

Finding 3. Our answer to RQ3 is that, analytic services do not
have any mechanisms to vet or anonymize PII they received from
ASMs. The PII are directly combined with behavior reports when
stored and provided to app developers.

4.4 Policy Violations and Misalignment

We present our answer to RQ4 in this subsection. As we discussed
in our results above, it is a privacy risk when PII was set by app de-
velopers on analytic services without encryption or anonymization.
Such misconfiguration may cause two types of policy-related issues.
First, to protect user privacy and avoid legal liabilities, analytic ser-
vices may state in their TOS that they do not allow developers to set
PII to their ASMs. So the misconfiguration of ASMs will cause TOS
violations. Second, the app’s own privacy policy may claim anony-
mous data analytics or fail to describe the sharing of PII to analytic
services, so the misconfiguration of ASMs will cause misalignment
between code and privacy policies.

4.4.1 TOS Violations. Figure 3 shows that 120 apps set PII on ten
analytic services. As we mentioned in Section 1, four analytic ser-
vices (Firebase, Google Analytics, Flurry, Mixpanel) explicitly re-
quire app developers to avoid setting PII to ASMs in their terms
of service (Firebase, Google Analytics, Flurry, note that they are
the top three market-share holders in analytic services) or privacy
guidance (Mixpanel).

Based on our experiment results, 31 apps have set PII to ASMs
of Firebase, Google Analytic, or Flurry, and thus we believe that
the misconfiguration of ASMs actually violates their terms of ser-
vices. Furthermore, 6 apps have set PII to ASMs of Mixpanel, so
they are violating Mixpanel’s privacy guidance. It should be noted
that, although the remaining 83 apps did not violate the policies
of analytic services, their practice of setting PII to ASMs still jeop-
ardizes users’ privacy. Also, the top 3 market share holders have
relatively less (31/120) misconfigurations maybe because they have
instructions of ASMs in their documentation and TOS, which help
avoid misconfigurations.

4.4.2 Misalignment of Apps’ Privacy Policies. Misconfiguration of
ASMs may also cause misalignment between an app’s code and
privacy policy. To find such apps, for each of the 120 apps that set
PII to ASMs , three of the authors independently read the app’s
privacy policy and wrote arguments on why he / she believes using
PII for analytic services is a potential policy misalignment or not.
Then, the authors met to discuss the arguments for each app, and
voted to determine whether the misconfiguration is misaligned
with the privacy policy.

We found 27 out of 120 apps have misconfigurations that are mis-
aligned with their own privacy polices. 15 apps vaguely mentioned

in their privacy policy that they may share PII of users with third
parties. 58 apps have no misalignment with their own privacy poli-
cies as they explicitly indicate that they will share specific personal
information type to third-parties. The remaining 20 apps either
have a non-English privacy policy or the privacy policy web-page
is not available. The detailed discussion record of all 120 apps is
available in our anonymous website, and misalignment examples
are presented later in this subsection.

Privacy Misalignment. We consider an app to be misaligned with
its privacy policy if the policy does not indicate that it will share PII
with third parties, or if the policy claims anonymous data collection.
For example, the social app Emojidom’s privacy policy [27] states
that:

Do third parties see and/or have access to informa-
tion obtained by the Application?
Only aggregated, anonymized data is periodically transmit-
ted to the analytics tools which help us evaluate the Appli-
cation’s usage patterns and improve the Application over
time.

However, our test results show that this app set user email ad-
dresses to Crashlytics, which is misaligned with this privacy policy.

Vague Privacy Policies. Privacy policies should inform users about
types of user information are shared with third parties. Third party
analytic services also request app developers to make this sharing
explicit in their apps’ privacy policies. For example, Crashlytics is
one of the most popular third party analytic services for helping de-
velopers to analyze crashes in their apps. Crashlytics requires that
all developersmaintain a privacy policy that fully and accurately dis-
closes the type of information shared with Crashlytics [21]. Among
120 apps that send PII to analytic services, 15 of them abstractly
indicate that they may share personal information to third-parties
without specifying what the information types are. For example,
the shopping app Staples sets user email address to Crashlytics and
its privacy policy states that [28]:

We may share your Personal Information with our third-
party service provider to process transactions or provide ser-
vices on our behalf, including but not limited to providers of
product delivery services (for example UPS and FedEx) and
website analytics (for example Google Analytics).

No misalignment. We consider an app has no misalignment with
its privacy policy if it clarifies the data types being shared with
third-party service providers.
Finding 4. Our answer to RQ4 is that, among 120 apps with
misconfiguration of ASMs, the misconfigurations cause terms-
of-service violation of analytic services in 31 apps, and privacy
policy misalignment in 27 apps.

4.5 Threats to Validity

The major threat to internal validity of our study is the false posi-
tives and negatives in our misconfiguration detection process. Since

How Does Misconfiguration of Analytic Services Compromise Mobile Privacy? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 6: A demo report in Dashboard of Mixpanel [33]

Figure 7: A demo report in Dashboard of Crashlytics [5]

we report only observed misconfigurations at run time, we should
not have false positives. It is possible that our dynamic analysis
failed to trigger some misconfigurations, our collected ASMs are
not complete, or our matching process missed some sophisticated
transformed argument values. So our reported number of misconfig-
urations is actually an under-estimation, which will not undermine
our major findings. To reduce this threat, we carefully scanned the
documentation of analytic services, combined monkey and manual
log-in to enhance the code coverage, and considered various value
transformations when matching the reference user profile with
system logs. Since most developers will perform configuration of
analytic libraries when the app is started, the false negative rate
caused by uncovered misconfiguration should not be high. The
major threat to external validity of our study is that our findings
may apply to only the 1,000 apps under study. To reduce this threat,
we chose the top apps from Google Play store and these apps covers
almost all different app categories.

5 LESSONS LEARNED

In this section, we discuss the potential privacy risks found and our
recommendations for different parties involved in the configuration
of analytic services.

5.1 Privacy Risks

Although top analytic services advise app developers to not use PII
as user attributes, many app developers still do so and no mecha-
nism has been provided (either by Android or the analytic services
themselves) to prevent app developers from using PII. This means
that the analytic services may unintentionally link a behavior re-
port to a specific individual. Based on our experiment results, a
non-trivial number of apps are using emails and device identifiers
(e.g., Android ID, IMEI, serials number) as user attributes. These
identifiers are long-lived and can be used to construct a user’s
comprehensive profile from multiple apps using the same analytic
service. Since most analytic services further share their collected
data to third parties for business purposes, the personal-identifiable

comprehensive profiles can be exposed to more risk due to the
neglect of PII inside the data.

Since analytic services and app developers hold a large amount
of valuable user data, it is very likely that they can be targeted for
information theft/leakage attacks. When an information leakage
incident happens, if the data stored on the server is not in an anony-
mous and aggregated form, the consequence will be much more
severe than the scenarios where they are anonymized and aggre-
gated. Because analytic services do not expect app developers to
set PII to the ASMs, they may not have corresponding mechanism
to detect PII in the collected data, and thus may not use protection
mechanisms (e.g., encryption) on the collected data.

5.2 Actionable Suggestions

Base on our study, the five parties involved in analytic services may
take some counteractions to reduce the privacy risk caused by ASM
misconfigurations.

Research Community In order to precisely and comprehensively
detect misuse of analytic service ASMs, new static techniques are
desired to detect the data flow from PII sources to the ASMs. Al-
though it is possible to take advantage of off-the-shelf information
flow analyses [32, 34], the challenge still remains of detecting PII
sources and ASMs. For PII sources, many types of PII (e.g., user-
name, user’s email) are user defined so their source may be a text
box, a local file or a database which cannot be easily differentiated
from other non-PII information. Therefore, more precise techniques
to identify PII sources or intermediate sources (e.g, a variable that
loads PII values from a file or the database) are required. For ASMs,
although we manually constructed ASM sets for 18 popular ana-
lytic services in the study, the analytic services are continuously
evolving and new analytic services may become popular. For this
reason, our sets can quickly become out-of-date. Therefore, novel
techniques to automatically identify ASMs and their behaviors are
desirable.

Another potential research endeavor is studying how analytic
services can vet and anonymize PII so that they can enforce the pri-
vacy requirement of using ASMs. One challenge is that the analytic
services do not know where the argument values come from. So, a
likely solution is value-based detecting of PII, where a classification
model may be learned to detect PII values in run-time arguments.

Privacy profiles [41] are automatically extracted from apps to
provide fine-grained information of collected and shared informa-
tion types, but they cannot handle advanced privacy properties
such as data anonymity and aggregation. Anonymity may be ver-
ified by checking whether data is combined (e.g., concatenated,
put into one object or key-value pair) with PII. Aggregation may

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu

be verified by checking whether individual data is destroyed (e.g.,
freed) at the end after they are read.

App Developers. App developers should take more care in follow-
ing ASM documentation/terms of service and avoid setting any PII
as user attributes. Instead of using raw PII, developers could en-
crypt or hash the data before it is passed to analytic services or use
non-PII instead. For example, if the differentiation of users helps on
more precise statistics (e.g., how many users are using their app or
certain activity), they can use Advertising IDs, randomly-generated
IDs, or encrypted/hashed PII as user’s identifier. App developers
should pay attention to their privacy policies as well, as they need
to make sure the policy is consistent with their practice of using
analytic services. At the same time, a clear profile on what kind
of PII is set to ASMs can help users understand how their privacy
data can be used by analytic services.

Analytic Services. Analytic service developers should enhance
and enforce data anonymity and aggregation in their code base.
In particular, just like Google Analytics, Firebase, Flurry, and Mix-
Panel, other analytic services should also try to provide a more
clear and easily reachable instruction about privacy-aware config-
uration. Meanwhile, when designing and implementing methods,
analytic service developers should avoid or limit the usage of over-
broad/vague methods (e.g., setProperties()) and methods that
aremeant to receive PII (e.g., setUserEmail(), setUserLocation()).
They should also add encryption features for methods that may
receive PII from the app.

Second, when an app sets PII to ASMs, analytic services could
have mechanisms to detect and anonymize the PII (e.g., regular
expressions). In this way, analytic services could add vetting mecha-
nisms in the implementation of ASMs to reject PII or raise warnings
on detection. Alternatively, instead of transparently handing over
the PII to app developers in their reports, they could encrypt the PII
or replace it with other non-PII, and then perform analysis on the
pre-processed data. After that, analytic services should generate a
report that only contains aggregated data about user behaviors.

Platform Providers. The Android platform has applied some
strategies to reduce the privacy risk over the years. For example,
in Android version 8.0 and higher, Android ID is no longer a con-
stant value for different apps installed on the same device. This
mechanism helps to prevent the analytic services from gathering
an individual user information across multiple apps. Since the An-
droid platform has access to much PII for the device’s users, such as
Google email account, Android ID, Device ID, it should be able to
vet such data sent to ASMs of analytic services. Working together
with analytic services (e.g., asking them to annotate ASMs), the
Android SDK could provide on-the-fly suggestions on which APIs
and API options should be used while app developers are coding.
Furthermore, the Android platform could provide the option to
automatically reset the Advertising ID periodically for users.

AppUsers.App users should be aware that they can be un-anonymously
tracked if app developers do not properly set their attributes on
analytic service. Our study found that some app developers use
usernames in analytic services so we suggest app users to avoid
using their real names or PII when registering with different apps.

In addition, Google Advertising ID has been encouraged to be used
as the individual identifier in the analytic services. However, if a
user does not reset the Advertising ID frequently, it becomes an-
other long-lived online identifier. So we encourage app users to
reset their Advertising IDs periodically to avoid being identified as
the same individual for a long time period.

6 RELATEDWORK

In this section, we categorize related existing research efforts into
the following three categories: studies on the data collection and
sharing of analytic services, general information-leak detection
techniques, and privacy policy analysis.

6.1 Data Collection and Sharing of Analytic

services

Existing research efforts mainly studied what user activities are
tracked by analytic services and what information they may collect.
Liu et al.[37] investigated the types of user activities being tracked
by analytic services. Their results reveal different levels of user-
activity tracking on different UI event types. Since analytic libraries
are integrated into the app, they receive the same privilege (e.g.,
permissions) of the enclosing app from the Android platform. This
allows the analytic services to collect some personally sensitive
device information. Seneviratne et al. [44] show that 60% of paid
apps are connected to analytic services that collect personal data
compared to 85% - 95% of free apps. They perform static analysis
on Android API calls inside the analytic libraries and summarize
the type of personal data collected by the analytic services from
the Android platform. Compared with these works, our approach
focuses on misconfiguration of ASMs where PII can be combined
with user behavior reports to compromise their anonymity. This is
a novel aspect that has never been investigated in the above efforts.

6.2 Detection of General Information Leaks

There has been a lot of work on the detection of information leask
on mobile platform. In particular, ClueFinder [38] leverages NLP
technology for building a learning system to identify sensitive data
leaks from apps to third parties. FlowDroid [32] leverages static
taint analysis with tunable sensitivity to trace information from
sources to sinks so it can also be used to detect information leaks.
TaintDroid [34] is one of the most popular Android taint systems
for tracking the information flow. Their study shows that two-thirds
of apps introduce potential privacy risks to sensitive user data. Vet-
Droid [51] is a dynamic analysis platform to construct permission
use behavior during runtime by intercepting the invocations of
Android APIs, which can be used to analyze information leaks. Han
et al. [35] uses dynamic taint analysis to study how apps expose
personal data and persistent identifiers in information flow. They
present a prototype privacy control, which inserts code checks at all
Android API invocations that access sensitive data. Network traffic
analysis techniques have also been applied to detect personal data
that app share with third parties [41] [43][42]. Razaghpanah et al.
[40] detect third-party advertising and analytic services at the traf-
fic level. Ren et al. [43] instrument VPN servers to identify privacy
leaks in network traffic. Vallina et al. [48] analyze mobile ISP traffic
logs to identify advertisement traffic. Compared with these works,

How Does Misconfiguration of Analytic Services Compromise Mobile Privacy? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

our PAMDroid also uses value-based dynamic taint analysis to
detect information leaks. However, our major contributions include
identifying the ASM misconfiguration problem, and the construc-
tion of ASM sets for popular analytic services. We also performed a
study to reveal the severity of the ASM misconfiguration problem
in practice.

6.3 Privacy Policy Analysis

Privacy policies inform users on how their information will be
collected, used and disclosed. Existing works have been working on
detecting misalignment between privacy policy and the actual data
practice in app code [46, 49, 50, 52]. They analyzed the app code
and detected what sensitive information types from user input or
Android platform API invocations are sent to network. After that,
they compared the collected and sharedwith information typeswith
the statements in privacy policies. Different from these previous
studies, our work tries to investigate whether developers’ practice
on analytic services configuration may compromise anonymity and
aggregation of users’ behavioral reports. We developed PAMDroid
to detect miconfigurations of ASMs, and our study shows that a
non-trivial number of apps set PII to ASMs of analytic services.
As a result, our work further detects TOS violations of analytic
services and privacy-policy misalignment related to anonymity and
aggregation, which are never reported by above research efforts.

7 CONCLUSIONS

In this paper, we developed a semi-automated approach PAMDroid
to investigate whethermobile app analytic services are really anony-
mous as they are often claimed and howASMs can bemisconfigured
by app developers. Our study on 1,000 popular apps has shown
that most analytic services provide ASMs, such as setUserId(),
to differentiate users. These ASMs can be misconfigured by devel-
opers so that individual user behavior profiles can be disclosed,
which might impose greater privacy risk to users. We found that
misconfiguration of ASMs in 37 apps leads to violations of analytic
services’ terms of service, and misconfiguration of ASMs in 27 apps
leads to privacy policy misalignment. In future, we plan to further
study what user behaviors are collected by analytic services besides
the events collected by default and to investigate whether PIIs can
also be leaked through user events. Moreover, We are going to
develop a fully automated framework to detect PIIs being set to
ASMs without encryption.

ACKNOWLEDGMENTS

This work is supported in part by NSF Awards 1748109, 184646,
1453139, 1948244 and 1736209.

REFERENCES

[1] 2017. Equifax Data Breach. Retrieved May, 2019 from http://fortune.com/2018/
09/07/equifax-data-breach-one-year-anniversary/

[2] 2018. AppBrain Android analytics libraries. Retrieved October, 2018 from https:
//www.appbrain.com/stats/libraries/tag/analytics/android-analytics-libraries

[3] 2018. AppBrain, Firebase. Retrieved October, 2018 from https://www.appbrain.
com/stats/libraries/details/firebase/firebase

[4] 2018. AppsFlyer provide encryption option in API setUserEmails. Retrieved October,
2018 from https://support.appsflyer.com/hc/en-us/articles/207032126-AppsFlyer-
SDK-Integration-Android

[5] 2018. Crashlytics dashboard. Retrieved October, 2018 from https:
//stackoverflow.com/questions/34888420/crashlytics-how-to-see-user-name-
email-id-in-crash-details/

[6] 2018. Facebook Data Breach. Retrieved May, 2019 from https://www.nytimes.
com/2018/09/28/technology/facebook-hack-data-breach.html

[7] 2018. Firebase collect user event by default. Retrieved October, 2018 from https:
//support.google.com/firebase/answer/6317485?hl=en&ref_topic=6317484

[8] 2018. Firebase set user ID. Retrieved October, 2018 from https://firebase.google.
com/docs/analytics/userid

[9] 2018. Firebase set user preoperties. Retrieved October, 2018 from https://firebase.
google.com/docs/analytics/android/properties

[10] 2018. Firebase user propertise. Retrieved October, 2018 from https://support.
google.com/firebase/answer/6317519?hl=en&ref_topic=6317489

[11] 2018. Flurry API setUserId(). Retrieved October, 2018 from https://developer.
yahoo.com/flurry/docs/analytics/gettingstarted/technicalquickstart/android/

[12] 2018. Flurry dashboard. Retrieved October, 2018 from https://developer.yahoo.
com/flurry/docs/analytics/lexicon/eventreporting/

[13] 2018. GDPR Anonymous Data. Retrieved January, 2020 from https://gdpr-
info.eu/recitals/no-26/

[14] 2018. GDPR definition of personal data. Retrieved October, 2018 from https:
//gdpr-info.eu/art-4-gdpr/

[15] 2018. GDPR Lawfulness of processing. Retrieved January, 2020 from https://gdpr-
info.eu/art-6-gdpr/

[16] 2018. GDPR online identifiers for profiling and identification. Retrieved October,
2018 from https://gdpr-info.eu/recitals/no-30/

[17] 2018. Marriott Data Breach. Retrieved May, 2019 from https://www.consumer.
ftc.gov/blog/2018/12/marriott-data-breach

[18] 2018. Mixpanel collect user event by default.
[19] 2018. Mixpanel’s rule about using API. Retrieved October, 2018 from

https://help.mixpanel.com/hc/en-us/articles/360000679006-Managing-
Personal-Information

[20] 2018. PlayDron metadata. Retrieved August, 2018 from https://archive.org/
details/android_apps&tab=about

[21] 2018. Privacy policy of Crashlytics. Retrieved October, 2018 from https://try.
crashlytics.com/terms/privacy-policy.pdf

[22] 2018. Universal Analytics usage guidelines. https://support.google.com/analytics/
answer/2795983?hl=en.

[23] 2019. Market share of Firebase. Retrieved August, 2019 from https://www.
appbrain.com/stats/libraries/details/firebase/firebase

[24] 2019. Market share of Flurrt. Retrieved August, 2019 from https://www.appbrain.
com/stats/libraries/details/flurry/flurry-analytics

[25] 2019. Market share of Google Analytics. Retrieved August, 2019 from https:
//www.appbrain.com/stats/libraries/details/analytics/google-analytics

[26] 2019. Market share of Mixpanel. Retrieved August, 2019 from https://www.
appbrain.com/stats/libraries/details/mixpanel/mixpanel

[27] 2019. Privacy policy of emojidom. Retrieved August, 2019 from http://www.
emojidom.com/privacy-policy

[28] 2019. Privacy policy of Staples. Retrieved August, 2019 from https://www.staples.
com/hc?id=dbb94c10-973c-478b-a078-00e58f66ba32

[29] 2019. Privacy policy ofShopclues. Retrieved August, 2019 from http://m.shopclues.
com/rules-and-policies.html

[30] 2019. UI/Application Exerciser Monkey. Retrieved August, 2019 from https:
//developer.android.com/studio/test/monkey.html

[31] 2019. Understanding PII in Google’s contracts and policies. Retrieved August, 2019
from https://support.google.com/analytics/answer/7686480?hl=en

[32] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[33] Mixpanel dashboard. 2018. . Retrieved October, 2018 from https://help.mixpanel.
com/hc/en-us/articles/360000865566-Set-up-Your-Tracking/

[34] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[35] Seungyeop Han, Jaeyeon Jung, and David Wetherall. 2012. A study of third-party
tracking by mobile apps in the wild. Univ. Washington, Tech. Rep. UW-CSE-12-03-
01 (2012).

[36] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. 2017. The ART
of App Compartmentalization: Compiler-based Library Privilege Separation on
Stock Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1037–1049.

[37] Xing Liu, Sencun Zhu,WeiWang, and Jiqiang Liu. 2016. Alde: privacy risk analysis
of analytics libraries in the android ecosystem. In International Conference on
Security and Privacy in Communication Systems. Springer, 655–672.

[38] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min
Yang. 2018. Finding clues for your secrets: Semantics-driven, learning-based
privacy discovery in mobile apps. In Proceedings of the 2018 Annual Network and
Distributed System Security Symposium (NDSS)(San Diego, California, USA.

http://fortune.com/2018/09/07/equifax-data-breach-one-year-anniversary/
http://fortune.com/2018/09/07/equifax-data-breach-one-year-anniversary/
https://www.appbrain.com/stats/libraries/tag/analytics/android-analytics-libraries
https://www.appbrain.com/stats/libraries/tag/analytics/android-analytics-libraries
https://www.appbrain.com/stats/libraries/details/firebase/firebase
https://www.appbrain.com/stats/libraries/details/firebase/firebase
https://support.appsflyer.com/hc/en-us/articles/207032126-AppsFlyer-SDK-Integration-Android
https://support.appsflyer.com/hc/en-us/articles/207032126-AppsFlyer-SDK-Integration-Android
https://stackoverflow.com/questions/34888420/crashlytics-how-to-see-user-name-email-id-in-crash-details/
https://stackoverflow.com/questions/34888420/crashlytics-how-to-see-user-name-email-id-in-crash-details/
https://stackoverflow.com/questions/34888420/crashlytics-how-to-see-user-name-email-id-in-crash-details/
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://support.google.com/firebase/answer/6317485?hl=en&ref_topic=6317484
https://support.google.com/firebase/answer/6317485?hl=en&ref_topic=6317484
https://firebase.google.com/docs/analytics/userid
https://firebase.google.com/docs/analytics/userid
https://firebase.google.com/docs/analytics/android/properties
https://firebase.google.com/docs/analytics/android/properties
https://support.google.com/firebase/answer/6317519?hl=en&ref_topic=6317489
https://support.google.com/firebase/answer/6317519?hl=en&ref_topic=6317489
https://developer.yahoo.com/flurry/docs/analytics/gettingstarted/technicalquickstart/android/
https://developer.yahoo.com/flurry/docs/analytics/gettingstarted/technicalquickstart/android/
https://developer.yahoo.com/flurry/docs/analytics/lexicon/eventreporting/
https://developer.yahoo.com/flurry/docs/analytics/lexicon/eventreporting/
https://gdpr-info.eu/recitals/no-26/
https://gdpr-info.eu/recitals/no-26/
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-6-gdpr/
https://gdpr-info.eu/art-6-gdpr/
https://gdpr-info.eu/recitals/no-30/
https://www.consumer.ftc.gov/blog/2018/12/marriott-data-breach
https://www.consumer.ftc.gov/blog/2018/12/marriott-data-breach
https://help.mixpanel.com/hc/en-us/articles/360000679006-Managing-Personal-Information
https://help.mixpanel.com/hc/en-us/articles/360000679006-Managing-Personal-Information
https://archive.org/details/android_apps&tab=about
https://archive.org/details/android_apps&tab=about
https://try.crashlytics.com/terms/privacy-policy.pdf
https://try.crashlytics.com/terms/privacy-policy.pdf
https://support.google.com/analytics/answer/2795983?hl=en
https://support.google.com/analytics/answer/2795983?hl=en
https://www.appbrain.com/stats/libraries/details/firebase/firebase
https://www.appbrain.com/stats/libraries/details/firebase/firebase
https://www.appbrain.com/stats/libraries/details/flurry/flurry-analytics
https://www.appbrain.com/stats/libraries/details/flurry/flurry-analytics
https://www.appbrain.com/stats/libraries/details/analytics/google-analytics
https://www.appbrain.com/stats/libraries/details/analytics/google-analytics
https://www.appbrain.com/stats/libraries/details/mixpanel/mixpanel
https://www.appbrain.com/stats/libraries/details/mixpanel/mixpanel
http://www.emojidom.com/privacy-policy
http://www.emojidom.com/privacy-policy
https://www.staples.com/hc?id=dbb94c10-973c-478b-a078-00e58f66ba32
https://www.staples.com/hc?id=dbb94c10-973c-478b-a078-00e58f66ba32
http://m.shopclues.com/rules-and-policies.html
http://m.shopclues.com/rules-and-policies.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://support.google.com/analytics/answer/7686480?hl=en
https://help.mixpanel.com/hc/en-us/articles/360000865566-Set-up-Your-Tracking/
https://help.mixpanel.com/hc/en-us/articles/360000865566-Set-up-Your-Tracking/

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu

[39] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-learning
Approach for Classifying and Categorizing Android Sources and Sinks.. In NDSS,
Vol. 14. Citeseer, 1125.

[40] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, Christian Kreibich, and Phillipa Gill. 2018. Apps,
Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking Ecosys-
tem. (2018).

[41] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian
Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson. 2015. Haystack: In situ
mobile traffic analysis in user space. arXiv preprint arXiv:1510.01419 (2015), 1–13.

[42] Jingjing Ren, Martina Lindorfer, Daniel J. Dubois, Ashwin Rao, David R. Choffnes,
and Narseo Vallina-Rodriguez. 2018. Bug Fixes, Improvements, ... and Privacy
Leaks - A Longitudinal Study of PII Leaks Across Android App Versions. In 25th
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018.

[43] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
2016. Recon: Revealing and controlling pii leaks in mobile network traffic. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services. ACM, 361–374.

[44] Suranga Seneviratne, Harini Kolamunna, and Aruna Seneviratne. 2015. A mea-
surement study of tracking in paid mobile applications. In Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless and Mobile Networks. ACM, 7.

[45] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and Taesoo Kim. 2016.
FLEXDROID: Enforcing In-App Privilege Separation in Android.. In NDSS.

[46] Rocky Slavin, XiaoyinWang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,
Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. 2016. Toward a framework for
detecting privacy policy violations in android application code. In Proceedings of
the 38th International Conference on Software Engineering. ACM, 25–36.

[47] Connor Tumbleson and Ryszard WiÅŻniewski. 2017. Apktool-A tool for reverse
engineering 3rd party, closed, binary Android apps.

[48] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan Grunenberger,
Konstantina Papagiannaki, Hamed Haddadi, and Jon Crowcroft. 2012. Breaking
for commercials: characterizing mobile advertising. In Proceedings of the 2012
Internet Measurement Conference. ACM, 343–356.

[49] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D Breaux,
and Jianwei Niu. 2018. Guileak: Tracing privacy policy claims on user input data
for android applications. In Proceedings of the 40th International Conference on
Software Engineering. ACM, 37–47.

[50] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. 2016. Can we trust the privacy
policies of android apps?. In 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 538–549.

[51] Yuan Zhang,Min Yang, BingquanXu, Zhemin Yang, Guofei Gu, PengNing, X Sean
Wang, and Binyu Zang. 2013. Vetting undesirable behaviors in android apps with
permission use analysis. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 611–622.

[52] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman Sadeh, Steven Bellovin, and Joel Reidenberg.
2017. Automated analysis of privacy requirements for mobile apps. In Proceedings
2017 Network and Distributed System Security Symposium.

